LYSIMETER RESEARCH Results of the 14-year-work of the "Lysimeter Research Group"

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre

University of Natural Resources and Applied Life Sciences, Vienna

Institute for Hydraulics and Rural Water Management

Sabine-Marie BERGER Peter CEPUDER

. ...

LYSIMETER RESEARCH 14-year-work of the "Lysimeter Research Group"

- Lysimeter Research Group
- Lysimeter Definition
- Research Tasks Applications
 - Agriculture
 - Remediation of Brownfield Sites
- Limitations of Lysimetry
- Strategies to improve Effectiveness
- Recommendations
- Conclusions Opportunities

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-

22.01.2006

LYSIMETER RESEARCH I Sabine-Marie BERGER – Peter CEPUDER

LYSIMETER RESEARCH GROUP

- is a platform for interdisciplinary exchange of information between researchers and practitioners on an international level.
- initiates, coordinates and contributes details to specific fields of research
- Its focus is on different kinds of LAND-USE AND THEIR EFFECTS ON AQUATIC SYSTEMS
- more details: www.lysimeter.at

22.01.2006

LYSIMETER RESEARCH | Sabine-Marie BERGER - Peter CEPUDER

3

LYSIMETER Definition

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre

- Lysimeters are containers filled with soil,
- seepage water is measured directly,
- percolating water is collected - either gravimetrically or by applying negative soil water pressure.

22.01.2006

LYSIMETER RESEARCH I Sabine-Marie BERGER – Peter CEPUDER

AGRICULTURE Hydromorphic Soils Soils influenced by Groundwater

Lysimeter-Station Paulinenaue (Germany):

experiments to determine the nitrogen-loss of different plants with different groundwater-levels:

nitrogen-loss decreases with:

- nitrogen withdrawal by yield
- higher evapotranspiration
- higher groundwater-level

With praxis-oriented fertilizing (< 200 kg N/ha/a) no danger for groundwater contamination!

groundwater lysimeters!

(Behrendt 1996)

22.01.200

LYSIMETER RESEARCH | Sabine-Marie BERGER - Peter CEPUDER

7

REMEDIATION Effectiveness of Surface Sealings (1)

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre Umwelt

Lysimeter-Facility of ARC Seibersdorf (Austria) Unwell Unw

4 different top cover systems of old landfills

- 0,5 m / 1,0 m substrate layer
- compacted clay layer covered with 0,5 m s.
- waste "inertisated" and covered with 0,5 m s.

Vegetation: combination of Alfalfa and Populus-trees

22.01.2006

LYSIMETER RESEARCH I Sabine-Marie BERGER – Peter CEPUDER

.

REMEDIATIONS Effectiveness of Surface Sealings (2)

How was the amount of seepage water and the emission of landfill gases influenced?

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Imwelt

Seepage Water

as expected: highest amount in chamber A – smallest amount in chamber C

Methane Gas

no methane detected in chamber A High variation in gas content in chamber D

(Wimmer 2005)

22.01.2006

LYSIMETER RESEARCH | Sabine-Marie BERGER - Peter CEPUDER

۵

LIMITATIONS OF LYSIMETRY Lysimeter Failures

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

Lysimeters shall build a **representative part of the site** to be examined, but the following parameters/effects are a common source for lysimeter failures:

- Size of Lysimeter Surface
- Border-Effects
- Oasis-Effects
- Surface-Phenomenons at the Lysimeter Base

22.01.2006

LYSIMETER RESEARCH I Sabine-Marie BERGER – Peter CEPUDER

LIMITATIONS OF LYSIMETRY Size of Lysimeter Surface

- to compensate border effects and
- to ensure a representative stock of plants
 - to gain a useable median despite certain genetic differences between the individuals
 - necessary area is plant-specific
 e.g. Maize: 100,000 plants/ha

e.g. Maize: 100.000 plants/ha → 2 m² (20 plants)

22.01.2006

LYSIMETER RESEARCH | Sabine-Marie BERGER - Peter CEPUDER

44

LIMITATIONS OF LYSIMETRY Border Effects

limitation of rooting space

(reason: lysimeter too small)

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-

uncontrolled leaking of surface water

(reason: no compound between soil and lysimeter wall)

unnatural "heating" of soil

(reason: additional radiation at the lysimeter border)

22.01.2006

LYSIMETER RESEARCH I Sabine-Marie BERGER – Peter CEPUDER

LIMITATIONS OF LYSIMETRY Oasis Effects

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-

Lysimeter plants must grow under
the same micro-climatically conditions as the surrounding vegetation, especially:

- relative humidity
- surface temperature
- available evaporation energy (radiation energy, convective energy)

22.01.2006

LYSIMETER RESEARCH | Sabine-Marie BERGER - Peter CEPUDER

13

LIMITATIONS OF LYSIMETRY Phenomenons on the Lysimeter Base

due to the interruption of the natural soil profile:

- disturbance of the natural water movement
- change of "natural pressure situation"
- → Influence on the suctionpower development

22.01.2006

LYSIMETER RESEARCH I Sabine-Marie BERGER – Peter CEPUDER

STRATEGIES TO IMPROVE EFFECTIVENESS

Lysimeter Station Großobrigen, Germany

PARAMETER	REQUIREMENT	REALISATION
Micro-Climate	no Oasis-Effect	lysimeters in large fields (distance to field border approx. 200m)
		no bare soil between lysimeter and field
Lysimeter Size	■Typical "planting structure";	2 m² lysimeter surface
Depth	representative number of plantsNo limitation of rooting space	2,5 m depth
Soil Water	No change of soil profile	Undisturbed soil (Monolith)
Balance	Close compound between soil and lysimeter	Suction Plate
	■No build-up of water	

22.01.2006

LYSIMETER RESEARCH | Sabine-Marie BERGER - Peter CEPUDER

STRATEGIES TO IMPROVE EFFECTIVENESS

Lysimeter Station Gumpenstein, Austria

Depth: 1 m Surface: 1 m²

Disturbed (=artificially filled) soil

Gravitation Lysimeter

Field-Lysimeter 5 cylinders

Depth: 1,5 m Surface: 1 m² Monolith (undisturbed) **Gravitation Lysimeter**

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre

22.01.2006

LYSIMETER RESEARCH | Sabine-Marie BERGER - Peter CEPUDER

STRATEGIES TO IMPROVE EFFECTIVENESS

Lysimeter Station Gumpenstein, Austria

Comparison between a Chamber-Lysimeter and a monolithic Field-Lysimeter

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

Results after 3 years of Research:

average amount of percolating water:

Chamber Lysimeter: 360 mmField Lysimeter: 500 mm

average amount of nitrogen loss

22.01.2006

LYSIMETER RESEARCH | Sabine-Marie BERGER - Peter CEPUDER

17

RECOMMENDATIONS Lysimeter Research Group

- lysimeters with cylindrical containers
- monolith lysimeters
- integration into the surrounding vegetation
- Quality Management!!!
 although it is difficult to define common quality standards for the variety of lysimeters and their use

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Imwelt

22.01.2006

LYSIMETER RESEARCH | Sabine-Marie BERGER – Peter CEPUDER

CONCLUSIONS OPPORTUNITIES

The fields of applications for lysimeters are wide,

but every lysimeter must be designed for its specific application considering question and location!

Success and quality of lysimeter-studies depend very much on:

- exchange of experience
- cooperation between users / researchers / producers of lysimeter technology
 - → Lysimeter Research Group

22.01.2006

LYSIMETER RESEARCH | Sabine-Marie BERGER - Peter CEPUDER

